
A Component Assembly Approach Based On

Aspect-Oriented Generative Domain

Modeling

Fei Cao, Barrett R. Bryant, Carol C. Burt1

Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham, AL, USA

Rajeev R. Raje, Andrew M. Olson2

Department of Computer and Information Science
Indiana University Purdue University at Indianapolis

Indianapolis, IN, USA

Mikhail Auguston3

Computer Science Department
Naval Postgraduate School

Monterey, CA, USA

Abstract

We present an approach towards automatic component assembly based on aspect-oriented gener-
ative domain modeling. It involves the lifecycle covering the component specification generation,
and subsequent assembly of implementation components to produce the final software system.
Aspect-oriented techniques are applied to capture the crosscutting concerns that emerge during
the assembly process. Subsequently, those concerns are woven to generate glue/wrapper code for
assembling heterogeneous components to construct a single integrated system.

Keywords: Component Assembly, Generative Programming, Generative Domain Model,
Component Specification, Aspect Orientation, UniFrame, Two-Level Grammar.

1 Email: {caof, bryant, cburt}@cis.uab.edu
2 Email: {rraje, aolson}@cs.iupui.edu
3 Email: auguston@cs.nps.navy.mil

Electronic Notes in Theoretical Computer Science 114 (2005) 119–136

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.02.070

mailto:{caof, bryant, cburt}@cis.uab.edu
mailto:{rraje, aolson}@cs.iupui.edu
mailto:auguston@cs.nps.navy.mil
http://www.elsevier.com/locate/entcs

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
A Component Assembly Approach Based On Aspect-Oriented Generative
Domain Modeling

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Alabama at Birmingham,Department of Computer and
Information Sciences,Birmingham,AL,35294

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We present an approach towards automatic component assembly based on aspect-oriented generative
domain modeling. It involves the lifecycle covering the component specification generation, and subsequent
assembly of implementation components to produce the final software system. Aspect-oriented techniques
are applied to capture the crosscutting concerns that emerge during the assembly process. Subsequently,
those concerns are woven to generate glue/wrapper code for assembling heterogeneous components to
construct a single integrated system.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

18

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

As software component development technology becomes more mature, the
notion of developing software systems by assembling Commercial-Off-The-
Shelf (COTS) components (implemented in models such as COM 4 , DCOM 5 ,
EJB 6 , CCM 7) becomes not only theoretically rational, but also practically
sound. Component-Based Software Composition offers a development paradigm
with reduced time-to-market and cost while achieving enhanced productivity,
quality and maintainability [3].

But component assembly remains mainly either a handcrafting effort or
proprietary approach [28]. It is becoming an even harder problem when com-
ponents are delivered in binary form which may need binary code adaptation
[17], or when the underlying implementation language, deployment environ-
ment are heterogeneous. For the latter case, what’s commonly seen is a mid-
dleware approach such as CORBA, that allows the components to work co-
operatively across language and platform boundaries. However, this approach
may also add extra complexity that makes the construction of a distributed
system more difficult [9].

UniFrame 8 is a framework for seamless interoperation of heterogeneous
distributed components. It aims to automate the process of integrating het-
erogeneous components to create distributed systems that conform to quality
requirements. By automatic generation of glue/wrapper code based on the
developer’s functional and non-functional specification ([2], [26]), the system
generated will be tailored to specific requirements as opposed to being a mono-
lithic end product, and reliability is also enhanced. In this paper, we present
an approach to support the automatic component assembly in UniFrame by
applying aspect-oriented generative domain modeling. In Section 2, we intro-
duce the background information of UniFrame. Section 3 and 4 present our
approach of using aspect-oriented generative domain modeling for component
assembly. Section 5 presents some discussion, followed by the description of
related work together with the conclusion in Section 6.

4 Component Object Model, http://www.microsoft.com/com
5 Distributed Component Object Model, http://www.microsoft.com/com/tech/dcom.asp
6 Enterprise Java Beans, http://java.sun.com/products/ejb
7 CORBA� (Common Object Request Broker Architecture, http://www.omg.org/corba)
Component Model, http://www.omg.org/cgi-bin/doc?orbos/99-07-01
8 Unified Framework for Seamless Integration of Heterogeneous Distributed Software Com-
ponents - http://www.cs.iupui.edu/uniFrame

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136120

2 Background

2.1 Generative Programming

As is introduced in [10], Generative Programming (GP) is a software engineer-
ing paradigm based on modeling software families such that, given a particu-
lar requirement specification, a highly customized and optimized intermediate
or end-product can be automatically manufactured on demand from elemen-
tary, reusable implementation components by means of configuration knowl-
edge. The requirement specification is sometimes referred to as ordering of
products; the terminology used to specify family members is referred to as
the problem space; the implementation components with their possible con-
figurations form the solution space. The problem space and solution space,
together with the associated configuration knowledge, constitute the Genera-
tive Domain Model (GDM) [10]. The distinct property of GP is that it is not
only about a development for reuse in terms of building a GDM for software
system families, but also about a development with reuse in terms of using
GDM to generate concrete systems; it focuses on generation of system families
rather than a one-of-a-kind system.

2.2 UniFrame

With advances in network technology, software systems are shifting from a
closed, centralized architecture to being open and distributed; from being
homogeneous in implementation to adopting heterogeneous components for
constructing the whole system. To harness the omnipresent components in a
distributed system while having to address the inherent complexity of such a
paradigm, the functional and non-functional properties of components must
be formally captured, and there needs a means to assure the specified QoS
(Quality of Service) 9 for the system assembled from components. UniFrame is
a framework to address those concerns [26]. It uses a Unified Meta-component
Model (UMM) [25] to encode the meta-information of a component such
as functional properties, implementation technologies, and cooperative at-
tributes.

In UniFrame, a GDM is also used to capture the domain knowledge and
to elicit assembly rules. But the use of a GDM doesn’t include the implemen-
tation components: this part is assumed to be offered in a distributed system
environment by different vendors observing the stipulated specifications in the
problem space of the GDM; those implementation components are exposed by

9 In this paper, “non-functional aspect”, “non-functional-property” and “Quality of Service
(QoS)” may be used interchangeably.

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136 121

vendors and are subject to location by a distributed resource discovery service
[27]. In addition, the GDM in UniFrame is used to capture the assembly rules
for the discovered components.

Figure 1 illustrates the big picture of UniFrame. The annotated number
represents the processing order. Starting from domain experts, a GDM will
be created (1.1) and will be used together with some domain standards (1.2)
as guidelines (2.1, 2.2) for component developers to implement components
in solution space. Those implementation components, after being quantified
with some QoS parameters (3), will be exposed to a distributed resource dis-
covery service (5). Thereafter, a system integrator will query into the problem
space of the GDM for available/deployed component information (6), and then
command the resource discovery service (7) to fetch the required components
(5,8) for assembly. The component assembly is subject to validation (9) based
on specified QoS requirements. If it is not validated (11), then the integrator
has to initiate the query and integration process iteratively. As it can be seen
from above, the GDM stands as a crucial part of UniFrame, and how GDM is
represented so as to facilitate the component assembly is of vital importance.
We call the means to represent GDM generative domain modeling, which is
further detailed in the next section.

3 Overview of the Approach

3.1 Specification of Components in the Solution Space of the UniFrame GDM

Components in UniFrame are specified using the formalism of Two-Level
Grammar (TLG) [4]. The specification in TLG provides flexibility in trans-
lating TLG specifications to other representations, such as other formal spec-
ification languages like the Vienna Development Method [21], or application
code [6]. TLG contains two context-free grammars, one describing type do-
mains and the other describing rules and operations on those domains. Note
it is not required to have both levels. Below is a template TLG specification.

class Identifier-1

Identifier-1, Identifier-m1 :: DataType1; DataType2;...;

DataType-n1.

Function-signature-1,...Function-signature-m2 :

function-call-1,function-call-2,..., function-call-n2.

end class Identifier-1.

The line containing “::” denotes the first-level type domain definition, for
which the right hand side of “::” provides the type (which is called a meta-type)

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136122

Deploy
(End)

System Integrator

Quality Validation

Generative Domain Model

Component Developer

Component
Quality Measures

Component
Deployment

Distributed Resource
Discovery

Standards

Domain Expert
(Start)

Modified
Query

Yes

No

Query

1.1

1.2

2.1

2.2

3

45

6

7

8

9 11

10 Deploy
(End)

System Integrator

Quality Validation

Generative Domain Model

Component Developer

Component
Quality Measures

Component
Deployment

Distributed Resource
Discovery

Standards

Domain Expert
(Start)

Modified
Query

Yes

No

Query

1.1

1.2

2.1

2.2

3

45

6

7

8

9 11

10

Fig. 1. the Process of UniFrame.

while the left hand side provides the variable name. Note the right hand side
may specify multiple types at the same time, which are delimited by “;”. The
left hand side may also have multiple variables separated by “,”, which are of
the same meta-type as defined on the right hand side. Also note the meta-type
may form a hierarchy (meta-type hierarchy). For example, BankOperation
may be the meta-type of the Withdraw operation, while Service may be the
meta-type of the BankOperation. Consequently, Service is also regarded as
the meta-type of Withdraw.

The line containing “:” denotes the definition of the second-level rule/operation
(also called hyper-rule) over the first-level type domains. ‘;’ can be used in the
right hand side of “:” to delimit multiple rules which share the same function
signature on the left hand side. Note both first-level and second-level may
contain multiple (including zero) sentences as opposed to just one sentence of
each in the above description.

3.2 Separation of Concerns in Generative Domain Modeling

Consider the following two component specifications in the GDM problem
space (note this simple example serves for the motivation purpose only–full

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136 123

definition of a component description language is provided in Section 4.2).

Component BankServer

provides AccountManagement:

applies AccessControl

end Component

Component BankClient

requires AccountManagement:

uses RMIServer applying QoSMonitor

end Component

In the BankServer specification, the provided service AccountManage-
ment uses AccessControl. But as business rules are subject to change, the
BankServer may lift the AccessControl or enforce other type of controls, either
of which will reduce the reusability of the original BankServer implementation
component. In the BankClient specification, the “RMIServer” and “QoSMon-
itor” that are required for a server-side AccountManagement service represent
the glue/wrapping logic needed to integrate the client and server components.
This tangles the BankClient component and also reduces its reusability as
glue/wrapping requirements change.

Aspect-Oriented Programming (AOP) [18] provides a means to capture
crosscutting aspects in a modular way with new language constructs, and also
provides a join point model to “hook” the aspects with the base program. This
is the basis of augmenting the component specification approach with aspect
orientation in order to separate those crosscutting assembly-related aspects of
components. Those aspects do not need to be implemented by vendors. The
separation will refine the granularity of GDM, and contribute to the maximal
combination, minimal redundancy, and maximum reuse, which are the desired
properties of implementation components [10] in the solution space of GDM.
Consequently, the component assembly process evolves into an aspect weaving
process. Table 1 provides the tentative catalog of assembly related concerns.

Figure 2 illustrates the aforementioned idea. The arrow ending with a
diamond figure represents the include relationship as in the standard UML 10

notation. Separation of concerns [23] is introduced into the domain analysis
phase, the output of which is the GDM. The GDM includes the concerns
identified at the domain analysis phase (which are also called early aspects 11),
and those aspects are collectively stored into a repository called the aspect

10 Unified Modeling Language, http://www.omg.org/uml
11 http://early-aspects.net/

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136124

Functional Business rule enforcement

Specific technology instrumentation

Pre/post condition

...

Non-Functional Profiling

QoS Validation

QoS Instrumentation

...

Table 1
Assembly Related Aspects

library. This aspect library corresponds to the configuration knowledge as
indicated in Section 2.1. The GDM also includes Component Description
Language (CDL, the actual definition to be provided in Section 4.2) in its
problem space part; the CDL is also used as a guideline for implementation
of components by different vendors. Upon an ordering request over the GDM
problem space, the CDL in the problem space will be weaved with involved
assembly aspects into the specifications for glue/wrapper code generation,
which by referencing the implementation components, will be used to generate
final glue/wrapper code to connect the components.

4 Multi-Stage Component Assembly

Before we detail the component assembly process in Section 4.3, we provide
the related specification definitions in Section 4.1 and 4.2.

4.1 Definition and Use of Aspect

In such AOP languages as AspectJ [19], aspects are defined in a way that is
closely bound to the base program (the join point is specified syntactically
based on the base program). In contrast, in Figure 2, aspects are separately
stored as a library. Thus, a join point model is required to hook the aspects to
the targeted program so as to apply the related advice provided in the aspect.

Aspect Description Language (ADL)is defined as follows:

aspect <aspectname>

advises: <Meta-type>.

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136 125

GDM

Domain Analysis

Aspect LibraryCDL

Component
Repository

guideline

Weaver

Weaved Specification
Select/
Reference

Glue/Wrapper code

apply

GDM

Domain Analysis

Aspect LibraryCDL

Component
Repository

guideline

Weaver

Select/
Reference

Glue/Wrapper code

apply

Fig. 2. Aspect-Oriented Generative Domain Modeling

[before: <advice>.]

[after: <advice>.]

end aspect <aspectname>

The name enclosed in “<>” represents a grammar variable, which will be
exemplified in Section 4.3. The “[]” is used to delimit a part that is optional.
Those notations apply to the following Aspect Usage Language (AUL) and
CDL as well. The <Meta-type>, which is defined as in Section 3.1, is used
to specify the types of domain services that this aspect can be applied. The
advice following the directive before/after provides the pre/post actions to
be performed or pre/post conditions to be enforced before/after the domain
services, which can be used for temporal dependency specification and trac-
ing/QoS code instrumentation. For example, in [30], before/after advice is
used to specify rules for model checking. Consequently, the aspect library
represents a collection of assembly rules.

AUL is defined as follows:

apply <aspectname> on <type> [when <relational-expression>]

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136126

<aspectname> corresponds to an assembly-related aspect, which already pro-
vides a means to specify assembly rules as described in the preceding para-
graph. The <type> has to be consistent with the applicable <metatype> in
the ADL of <aspectname>. By consistent we mean the <metatype> as in the
ADL of <aspectname> should reside at the root position of some meta-type
hierarchy (see Section 3.1 for definition), where <type> is part of the hierar-
chy. The when directive in AUL further specifies the scenarios using relational
expressions, under which this aspect can be applied; in addition to the base-
program oriented weaving such as in AspectJ [18], the advice quantification
[12] here is also user-case oriented. It’s quite straightforward that AUL can
be used in product ordering specification as indicated in Section 2.1. Note
the definitions of ADL and AUL are inspired by [11], where non-functional
aspects are separated from components themselves to increase the component
(and non-functional aspect) reuse, and the non-functional aspects are handled
with similar language constructs as ADL and AUL described here.

4.2 Component Description Language (CDL)

CDL is used in the problem space of GDM to specify the components, their
required and/or provided services in a way to achieve maximal combination,
minimal redundancy, and maximum reuse (as mentioned in Section 3.2) as
the result of aspect-oriented generative domain modeling. CDL is defined in
TLG as described in Section 3.1.

component <componentname>

<DomainVariable1>,..<DomainVariable-m> ::

<DomainType-1>; <DomainType-2>;; <DomainType-n>.

[requires <Domain-Specific-Service>:

function-call-11, function-call-12,, function-call-1n.]

[provides <Domain-Specific-Service>:

function-call-21, function-call- 22,, function-call-n.]

end component <componentname>

The first level of CDL provides the type-hierarchy of domain variables. The
requires/provides specification constitutes the second level. For the requires
specification, the right-hand side details the requirements; for the provides
specification, the right-hand specification further specifies the semantics of
the provided services.

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136 127

4.3 Aspectual Component as a Paradigm of Component Assembly

The Aspect Library as shown in Figure 2 captures the general business and
technology requirements in terms of assembly-related concerns, and a single
AUL expression addresses a single concern. In contrast, a component captures
groups of behaviors and component assembly captures groups of concerns with
mixed scenarios. Aspectual Component is used here to address the group of
concerns occurring in the component assembly scenario.

The concept of aspectual component 12 is firstly proposed in [22], for which
aspects are decoupled from the base program by being defined as a generic as-
pectual component, which is instantiated later over a concrete data-model us-
ing a connector construct. Examples of aspectual components and connector
specifications will be provided in the following section. The concept of aspec-
tual component fosters the integration between AOSD (Aspect-Oriented Soft-
ware Development) and Component-Based Software Development (CBSD)
([8], [29]). The aspectual component model will also be used here for com-
ponent assembly. However, the original aspectual component is in Java, while
here it is a language-independent specification in TLG. The connector spec-
ification classifies server components’ related services into a category based
on meta-type. The connector specification also includes related operations
associated with the meta-type. The meta-type can be regarded as one kind of
join point in AOP, while the related operations in the connector specification
provides advice. The meta-type in an aspectual component is the basis upon
which client and server component get hooked up; the join point model to be
used is again type-based as in Section 4.1.

We integrate the ideas into an process diagram in Section 4.3.1, which is
reified by an example in Section 4.3.2.

4.3.1 The Overall Picture

Figure 3 provides the multi-stage component assembly process. Stage 1 is
mainly about the introduction of the GDM (from domain analysis), which in-
cludes CDL in problem space and Aspect Library as configuration knowledge.
Stage 2 involves the weaving of the aspect specification into the component
specification for each component involved in the assembly process. Stage 3 il-
lustrates the process of the component assembly specification generation based
on the aspectual component model. This stage involves a connector repository,
where the connector specifications will be registered, and the aspectual com-
ponent will initiate a query into the connector repository to find the matching

12 Note in our own context, the definition of aspectual component is subject to adjustment
over its original definition in [22].

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136128

connector specification based on meta-type consistency, and to apply the as-
sociated advice thereafter. The connector specification is translated from the
CDLs of the server component (service provider) and the aspectual component
specification is translated from the client component (service consumer). Af-
ter the full assembly specification is generated, by referencing the component
repository (which stores the set of component UMM specifications retrieved
by the discovery service in UniFrame), glue/wrapper code will be generated
in the final step.

4.3.2 An Example

To help clarify the aforementioned process, a simple example is provided be-
low, demonstrating how the aspectual component approach can be adapted to
the component assembly process. Assume that the component A is a banking
domain client component written in Java RMI requesting some banking ser-
vice from a server. Below is the partial specification of A’s CDL:

A.0 Component A

A.1 BankOperation:: Service.

A.2 Bank::BusinessDomain.

A.3 Platform::TechDomain.

A.4 requires BankOperation: Platform= ‘‘RMI’’.

A.5 end Component A.

Below is an ADL for a QoS measurement aspect stored in the Aspect Li-
brary and AUL to use that aspect.

aspect QoSMeter

advises: BankOperation.
before: EventTrace.setBeginTime().
after: EventTrace.setEndTime().

end aspect QoSMeter

apply QoSMeter on A.BankOperation.

The above specification of component A weaved with QoSMeter aspects
will be translated into the following aspectual component specification:

B.0 AspectualCom A

B.1 Bankoperation:: Service.

B.2 Bank::BusinessDomain.

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136 129

Glue/Wrapper Code

Select/
Reference

Query

Register

Connector Repository

Connector Specification
Aspectual Component

Specification

weave
weave

AUL 1 AUL2

CDL 1

Aspect
Library

CDL 2

GDM1
<<client>>

weave
Component
Repository

Assembly Specification

Stage 4: generation of
glue/wrapper code

Stage 1: generation of
GDM (from domain
analysis)

Stage 2: weaving
aspects into component
specification

Stage 3: generation of
component assembly
specification via
aspectual-component
weaving

Fig. 3. Multi-Stage Gluing/Wrapping

B.3 expect Bankoperation.

B.4 expect wrap Argument. //usage interface

B.5 replace Bankoperation://modification interface

B.6 EventTrace.setBeginTime(),

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136130

B.7 expected().wrap(<<Platform=‘‘RMI’’>>),
//each <<...>> corresponds to each

// expression in right hand side of ‘‘:’’ of A4

B.8 EventTrace.setEndTime().

B.9 end AspectualCom A

B.6 and B.8 are weaved from the QoSMeter aspect representing client-
side concerns. Note those lines prefixed by expect denote operation signatures
that are expected to be supplied with advice (which actually corresponds to
server-side services requested), and the expect-directive corresponds to the
join points in AOP. Expected operations are either used (usage interface)
or modified (modification interface, preceded with replace) in the aspectual
component definition. This process is similar to that described in [22].

Assume the component B is a banking domain server component imple-
mented in CORBA providing some banking services.

C.0 Component B.
C.1 Withdraw, Deposit:: Port;Bankoperation.

C.2 Bank::Domain.

C.3 Platform::TechDomain .

C.4 provides Bankoperation: Platform= ‘‘CORBA’’.

C.5 end Component B.

Note in line C.1, the two types denoted in the right hand side of “::”
means both withdraw and deposit are not only Port(s) (which means they are
banking services offered to external components), but also Bankoperation(s).

Below is an ADL for an Access Control aspect [5] from the Aspect Library.

aspect AccessControl

advises: Service.
before: Log.Check().

end aspect AccessControl

This aspect can be applied to any Service (meta-type, thus applicable to
Withdraw). Consequently, before each call to Service, Log.Check() will be
called to verify the credentials.

The following specification will be translated from the component B spec-
ification with the AUL of the preceding aspect AccessControl.

D.0 connector A-B

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136 131

D.1 {B.Withdraw, B.Deposit} is BankOperation. //join points
D.2 wrap(Argument):
D.3 apply AccessControl on B.WithDraw, B.Deposit,
D.4 apply RMIAspect on BankOperation when
D.5 Argument.getname (‘‘Platform’’)==‘‘RMI’’

D.6 end connector A-B

Note that lines D.2-D.5 further implement the advice part for the join
points (here, Withdraw and Deposit operations). The body of wrap is to wrap
the BankOperation with RMI specific code. This is similar to [24], in which
CORBA related operations are modularized as aspects and then woven into
application code to derive a CORBA implementation. The difference here is
that, those RMI or CORBA related aspects are pre-built and retrieved from
the aspect library, and they are represented with high-level specifications (in
ADL) rather than at the application code level. Upon weaving in Stage 4, the
wrap routine in the connector specification will be weaved into the aspectual
component specification.

The example illustrated in this section shows that assembly-related con-
cerns (functional and non-functional) of two components can be handled in
separate modules (here in the aspectual component definition and connector
specification) from the component specification itself. ADL and AUL provide
leverage for the assembly process itself to be easily specified and managed.
Consequently the assembly can be implemented by using a weaver to weave
assembly-specific advice together with component specifications.

5 Discussion

UniFrame, the motivating project of the component assembly approach pre-
sented here, aims at automating the process of integrating heterogeneous com-
ponents to create distributed systems that conform to quality requirements.
Generative Programming (GP) is the underpinning solution to fulfill this vi-
sion. In order to realize the vision of GP for the highest level of automation,
during the domain engineering phase, the creation of the domain model may
be applied using Model Integrating Computing (MIC) [20], which is a tech-
nology for using domain-specific modeling and a model based generator to
compose systems of various forms. MIC has been applied to create a Generic
Feature Modeling Environment (GFME) [7] to model system families and
generate reusable assets automatically. Based on the component assembly ap-
proach presented in this paper, Table 2 describes generative programming in
UniFrame.

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136132

Generative Programming UniFrame

Feature modeling GFME

Components are generated
in domain implementation
phase

Components are imple-
mented by vendors. Gener-
ation only occurs at system
level

Configuration Knowledge Aspect Library

Mapping of problem space
to solution space

Resource Discovery Service
to search components based
on component specification

Domain Specific Language
(DSL)

CDL, AUL, ADL

Generator Aspect Weaver

Table 2
Generative Programming in UniFrame

Also note the assembly paradigm described in Section 4.3 follows a client/server
architecture, whereby the client component (service consumer) specification
is translated into the aspectual component specification. In the event the
components to be assembled are not following that kind of architecture, the
ordering specification itself may be translated into an aspectual component
specification, and then the assembly process as shown in Figure 3 can be
applied.

6 Related Work and Conclusion

Recently, there has been work on the application of AOSD to CBSD. One
notable work is the aspectual component [22] as described in Section 4.3,
which provides a language approach to the effort of reusing aspects. The
aspectual component model is adjusted and used here for component assem-
bly. Grundy further introduces the notion of Aspect-Oriented Component
Engineering (AOCE) ([13], [14], [15], [16]). The aspects in AOCE have a
broad definition, which include user interfaces, collaborative work, distribu-
tion, persistency, memory management, transaction processing, security, data
management, component inter-relationships, and configuration characteris-
tics. AOCE, as an engineering approach, covers the lifecycle of component
engineering, from component requirements and specification, to implementa-

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136 133

tion, deployment, and testing. In contrast to AOP, which highly relies on code
weaving, AOCE aims to use aspect-codified capacities to support component
provisions and requiring of aspect-related services in a general way. In this
sense, AOCE can be applied for building the aspect library. None of the re-
lated work ever considers applying AOSD to assist the component assembly,
however.

This paper presents an approach to apply aspect orientation in the gen-
erative domain modeling phase and then leverage the aspect weaver to help
component assembly, in particular, for assembling components of client/server
architecture. Two repositories (aspect library, connector repository) are used,
which aligns with the distributed component assembly style. A type-based
join point model is used which can efficiently decouple the aspect definition
and aspect usage to promote the reuse of aspects. Compared with the inva-
sive composition approach as described in [1], we weave the assembly-related
concerns toward ultimately generating stub/skeleton code for gluing/wrapping
components, while the original components (which represent the business logic
core), together with their references to stub/skeleton code, will not be affected.
This is necessary for black-box components which do not allow invasive meth-
ods.

Future work includes the evolution of the aspect library, the application
of MIC to domain engineering to automatically generate CDL, and the de-
velopment of the weaver to weave CDL and ADL. The implementation of
glue/wrapper code generation based on the generated assembly specification
using the UMM specifications of discovered components must also be inte-
grated into this process.

7 Acknowledgements

We’d like to acknowledge the anonymous reviewers for their helpful sugges-
tions. This research is supported by the U. S. Office of Naval Research under
the award number N00014-01-1-0746.

References

[1] Aßmann, U., “Invasive Software Composition,” Springer-Verlag, 2003.

[2] Brahnmath, G. J., Raje, R. R., Olson, A. M., Auguston, M., Bryant, B. R., Burt, C. C., A
Quality of Service Catalog for Software Components, Proceedings of the Southeastern Software
Engineering Conference ((SE)2 2002), pp. 513-520, April, 2002.

[3] Brown, A. W., “Large-Scale Component-Based Development,” Prentice Hall, 2000.

[4] Bryant, B. R., Lee, B.-S., Two-Level Grammar as an Object-Oriented Requirements
Specification Language, Proceedings of 35th Hawaii International Conference on System

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136134

Sciences, 2002,
http://www.hicss.hawaii.edu/HICSS 35/HICSSpapers/PDFdocuments/STDSL
01.pdf.

[5] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M., Auguston, M., Model Driven Security:
Unification of Authorization Models for Fine-Grain Access Control, Proceedings of 7th IEEE
International Enterprise Distributed Object Computing Conference (EDOC 2003), pp. 159-171,
September, 2003.

[6] Cao, F., Bryant, B. R., Burt, C. C., Raje, R. R., Auguston, M, Olson, A. M., A Translation
Approach to Component Specification, OOPSLA ’02 Companion, pp. 54-55, November, 2002.

[7] Cao, F., Bryant, B. R., Burt, C. C., Huang, Z., Raje, R. R., Olson, A. M., Auguston, M.,
Automating Feature-Oriented Domain Analysis, Proceedings of 2003 International Conference
of Software Engineering Research and Practice (SERP 2003), pp. 944-949, June, 2003.

[8] Choi, J. P., Aspect-Oriented Programming with Enterprise JavaBeans, Proceedings of 4th IEEE
International Enterprise Distributed Object Computing Conference (EDOC 2000), pp. 252-261,
September, 2000.

[9] Colyer, A., Blair, G., Rashid, A., Managing Complexity in Middleware, Proceedings of the 2nd
AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software (ACP4IS),
March, 2003.

[10] Czarnecki, K., Eisenecker, U. W., “Generative Programming: Methods, Tools, and
Applications,” Addison Wesley, 2000.

[11] Duclos, F., Estublier, J., Morat, P, Describing and Using Non Functional Aspects in Component
Based Applications, Proceedings of 1st International Conference on Aspect-Oriented Software
Development (AOSD 2002), pp. 65-75, 2002.

[12] Filman, G., Friedman, D., Aspect-Oriented Programming is Quantification and Obliviousness,
Proceedings of OOPSLA Workshop on Advanced Separation of Concerns, pp. 168-177, October,
2000.

[13] Grundy, J. C., Multi-perspective Specification, Design and Implementation of Components using
Aspects, International Journal of Software Engineering and Knowledge Engineering, 10(6):713-
734, December 2000.

[14] Grundy, J. C., An Implementation Architecture for Aspect-oriented Component Engineering,
Proceedings of the 2000 International Conference on Parallel and Distributed Processing
Techniques and Applications, pp. 249-256, June, 2000.

[15] Grundy, J., Patel, R., Developing Software Components with the UML, Enterprise Java Beans
and Aspects, Proceedings of the 2001 Australian Software Engineering Conference, pp. 127-136,
August 2001.

[16] Grundy, J. C., Ding, G., Automatic Validation of Deployed J2EE Components Using Aspects,
Proceedings of the 17th IEEE International Conference on Automated Software Engineering
(ASE 2002), pp. 47-58, September 2002.

[17] Keller, R., Hölzle, U., Binary Component Adaptation, Proceedings of European Conference on
Object-Oriented Programming (ECOOP’98), Springer-Verlag, LNCS 1445, pp. 307-329, 1998.

[18] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M., Irwin,
J., Aspect-Oriented Programming, Proceedings of European Conference on Object-Oriented
Programming (ECOOP’97), Springer-Verlag, LNCS 1241, pp. 220-242, 1997.

[19] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W., An Overview of
AspectJ, Proceedings of European Conference on Object-Oriented Programming (ECOOP’01),
Springer-Verlag, LNCS 2072, pp.327-353, 2001.

[20] Ládeczi, Á., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J. and. Karsai, G.,
Composing Domain-Specific Design Environments, IEEE Computer, 34(11):44-51, 2001.

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136 135

[21] Lee, B.-S., Bryant. B. R., Automated Conversion from Requirements Documentation to an
Object-Oriented Formal Specification Language, Proceedings of ACM Symposium on Applied
Computing (SAC 2002), pp. 932-936, 2002.

[22] Lieberherr, K., Lorenz, D., Mezini, M., Programming with Aspectual Components, Technical
Report, NU-CCS-99-01, 1999,
http://www.ccs.neu.edu/research/demeter/papers/aspectual-comps/aspectual
.ps.

[23] Parnas, D., On the Criteria To Be Used in Decomposing Systems into Modules,
Communications of the ACM, 15(12): 1053-1058, December 1972.

[24] Pulvermuller, E., Klaeren, H., Speck, A., Aspects in Distributed Environments, Proceedings of
Generative Component-based Software Engineering (GCSE 99), Spinger-Verlag, LNCS 1799,
pp. 37-48, September 1999.

[25] Raje, R., UMM: Unified Meta-object Model for Open Distributed Systems, Proceedings of
4th IEEE International Conference of Algorithms and Architecture for Parallel Processing
(ICA3PP 2000), pp. 454-465, 2000.

[26] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M., Burt, C. C., A Quality of Service-
Based Framework for Creating Distributed Heterogeneous Software Components, Concurrency
and Computation: Practice and Experience, 14(12):1009-1034, 2002.

[27] Siram, N. N., Raje, R. R., Auguston, M., Bryant, B. R., Olson, Burt, C. C., A. M., An
Architecture for the UniFrame Resource Discovery Service, Proceedings of 3rd International
Workshop on Software Engineering and Middleware (SEM 2002), Springer-Verlag, LNCS 2596,
pp. 22-38, 2002.

[28] Sutherland, J., Heuvel, W.-J. v. d., Enterprise Application Integration and Complex Adaptive
Systems, Communications of the ACM, 45(10):59-64, October, 2002.

[29] Suváe, D., Vanderperren, W., and Jonckers, V., JAsCo: an Aspect-Oriented approach tailored
for Component-based Software Development, Proceedings. of the 2nd International Conference
on Aspect-Oriented Software Development (AOSD 2003), pp. 21-29, March, 2003.

[30] Ubayashi, N., Tamai, T., Aspect-Oriented Programming with Model Checking, Proceedings of
the 1st International Conference on Aspect-Oriented Software Development (AOSD 2002), pp.
148-154, April, 2002.

F. Cao et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 119–136136

	Introduction
	Background
	Generative Programming
	UniFrame

	Overview of the Approach
	Specification of Components in the Solution Space of the UniFrame GDM
	Separation of Concerns in Generative Domain Modeling

	Multi-Stage Component Assembly
	Definition and Use of Aspect
	Component Description Language (CDL)
	Aspectual Component as a Paradigm of Component Assembly

	Discussion
	Related Work and Conclusion
	Acknowledgements
	References

